

Thematic fit evaluation: an aspect of selectional preferences

Clayton Greenberg Asad Sayeed Vera Demberg Saarland University

Motivations and goals

Thematic fit: another way to see selectional preferences – how a processor reacts to a candidate filler given a verb and role. ("cut", instrument, "finger") $\rightarrow 1$ out of 7 ("cut", instrument, "knife") \rightarrow 6 out of 7

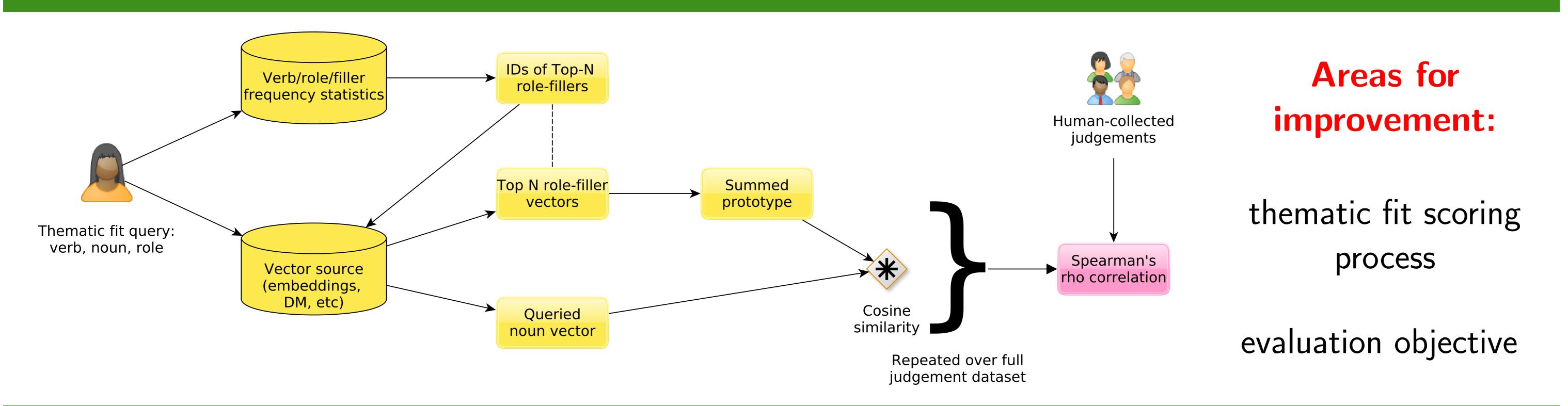
A window into human semantic processing.

Applications: psycholinguistic modeling, dialogue systems, testing of coreference with previous discourse items

Future evaluation aims

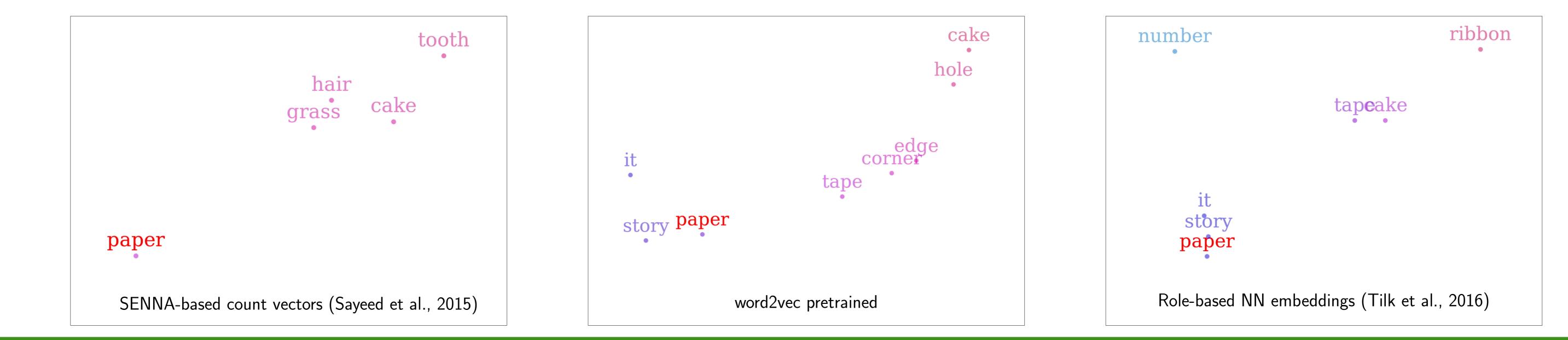
More balanced datasets

Compositionality


Existing evaluation datasets:

Perceptuomotor knowledge

Existing thematic fit models –


- ► Greenberg et al. (2015) datasets balanced for frequency and polysemy.
- Need more judgement data designed to contrast particular semantic features.
- verb-role-noun triplets need new datasets with other slots filled.
- e.g. if agent is "chef", then θ -*Fit*("whip", patient, "cream") > θ -*Fit*("whip", patient, "horse")
- distributional.
- Can semantic knowledge fully be captured by distributional stats?
- Rating scheme to distinguish different semantic "knowledges"?

Standard evaluation procedure

Visualizations from Roleo (Sayeed et al., 2016 ACL demos)

 θ -*Fit*("cut", patient, "paper"): excerpts of plots of top candidate vectors with "paper" vector.

Existing datasets and correlations

Descriptions of datasets

MSTNN: 1444 agents & patients, items drawn from many experiments (see table on right) **P07**: 414 agents & patients, systematic selection frequent predicates and arguments

verb role-filler	agent	patient
accept friend	6.1	5.8
accept student	5.9	5.3

F-Loc: 274 locations, **F-Inst**: 248 instruments, these roles tend to be less stable **GDS-mono**: 240 patients with monosemous verbs, verbs matched for freq. with GDS-poly **GDS-poly**: 240 patients with polysemous verbs. Each noun had a freq. and infreq. variant

5.5 4.1 accept teenager accept neighbor 5.4 4.4 6.6 accept award 1.1

12 August 2016

Centroid Greenberg-Clusters SDS2015-average SDS2015-swap Dataset

P07	59	55	59	48
MSTNN	34	38	34	25
F-Loc	23	29	21	19
F-Inst	36	42	39	45
GDS-mono	66	68	_	_
GDS-poly	43	47	_	_

Embeddings seem to perform more poorly when used on their own (Baroni et al., 2014).

- Greenberg clusters systematically improve correlations on datasets with wide freq. range.
- Spaces built on semantic vs. syntactic links capture complementary information.

Spearman's $\rho \times 100$ correlation with human judgements {asayeed,claytong,vera}@coli.uni-saarland.de RepEval 2016 – Berlin