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Short vs Long Range Dependencies in LM

Language models (LMs) predict upcoming text/speech.

Traditionally: use the most recent n words (n-gram LM):

p(upcoming word |past words) ~ p(upcoming word |last n words)
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Multi-Span Language Models

1) RNN hidden state changes rapidly — short context.
2) LSTM does not explicitly model short vs long context.
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Temporal Correlation and Perplexity

LM experiments conducted on the PTB and LTCB corpus:

Corpus

Train

Dev

Test

PTB

930K

74K

82K

LTCB

133M

7.8M

7.9M

For n > 5, n-gram LMs often fail: too sparse and complex.
But how much would long distance relationships help?
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Solution L

Use a multi-span network with two memory states to explicitly and
separately model the short and long range dependencies.

Measuring correlations in language, at a distance d:

Pd(Wl, Wz)
p(w1) - p(w2)

Long-Short Range Context Neural Networks
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(a) Temporal correlation on PTB corpus

LSRC network takes advantage of the LSTM ability to model long
range context while, simultaneously, learning and integrating the

government -> government

5 © A short context through an additional recurrent local state. model PPL 'model+KN5 PPL 4 of Par.
T it . N-1= 1 2 4 1 2 4 4
§ 4 statistical indepencfljle_:czl C Htg\ C KN+CaChe 168 134 129 - - - -
= L D — > FFNN 176 131 119 132116 107 = 6.32M
LR ? (_g & RNN 117 104 3.16M
1 " bistance o [ 0 ][ 0 ] [ ) ][ G ] LSTM (1L) 113 99 6.96M
Htgil Htg
— predict the next word based on the current word and a hidden ' ' — > LSRC(100) 109 )0 5.81M
memory state that evolves over time. H, f H > LSRC(ZOO) 104 4 7.0M
Table : LMs performance on the PTB test set.
Recurrent Networks for Language Modeling ot
Figure : Block diagram of the recurrent module of an LSRC network. model PPL |# of Par
Recurrent Language models use a dynamic hidden state to Hl = f (Xt—l LU Ht{—l) Context Size M—=N-1 1 2 4 A
model the context: {i.f o}, =0 (Vi,f,o CH! L Vifo L e ) KN+-cache 188 127 109  —
p(upcoming word |past words) ~ p(upcoming word|context state) ) i | t ) ° . = FFNN [M*200]-600-600-80k 235 150 114 64.84M
Ce=f(Vf -H + Vi-HE ) RNN [600]-R600-80k 85 06.36M
Different recurrent neural network models can be used to Ci=H0O0GC 1+i06 C LSTM [200]-R600-80k 66 65.92M
dynamically update the hidden context state. HE = o0, ® f (C) LSTM [200]-R600-R600-80k 61 68.80M
s | — LA P, =g (W - H8) LSRC [200]-R600-80k 63 65.96M
3 c t c  SRC P _ LSRC [200]-R600-600-80k h9 66.32M
% D > Table : LMs performance on the LTCB test set.
— = ( ’g S 1) Captures RNN and LSTM properties in a single network.
J J LS 2) Uses two separate hidden memory states.

3) Explicitly and separately models short (local) vs long (global)
context.

LSRC outperforms state-of-the-art NNLMs by explicitly modeling
long vs short range context using two separate (local and global)
memory states.
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(a) RNN (b) LSTM

_ 4) Recursively updates the global context using local context.
Figure : RNN vs LSTM architectures.
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