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Short vs Long Range Dependencies in LM

Language models (LMs) predict upcoming text/speech.
Traditionally: use the most recent n words (n-gram LM):

p(upcoming word |past words) ≈ p(upcoming word |last n words)

For n > 5, n-gram LMs often fail: too sparse and complex.
But how much would long distance relationships help?

Measuring correlations in language, at a distance d :

cd(w1,w2) =
pd(w1,w2)

p(w1) · p(w2)
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government -> government

government -> economy

by -> by

it -> it

be -> be

a -> a

statistical independence

→ predict the next word based on the current word and a hidden
memory state that evolves over time.

Recurrent Networks for Language Modeling

Recurrent Language models use a dynamic hidden state to
model the context:

p(upcoming word |past words) ≈ p(upcoming word |context state)

Different recurrent neural network models can be used to
dynamically update the hidden context state.

(a) RNN (b) LSTM

Figure : RNN vs LSTM architectures.

Multi-Span Language Models

1) RNN hidden state changes rapidly → short context.

2) LSTM does not explicitly model short vs long context.

Observations

Use a multi-span network with two memory states to explicitly and
separately model the short and long range dependencies.

Solution

Long-Short Range Context Neural Networks

LSRC network takes advantage of the LSTM ability to model long
range context while, simultaneously, learning and integrating the
short context through an additional recurrent local state.

Figure : Block diagram of the recurrent module of an LSRC network.
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1) Captures RNN and LSTM properties in a single network.

2) Uses two separate hidden memory states.

3) Explicitly and separately models short (local) vs long (global)
context.

4) Recursively updates the global context using local context.

LSRC Properties

Temporal Correlation and Perplexity

LM experiments conducted on the PTB and LTCB corpus:

Corpus Train Dev Test

PTB 930K 74K 82K
LTCB 133M 7.8M 7.9M
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(a) Temporal correlation on PTB corpus
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(b) Perplexity on PTB corpus

model PPL model+KN5 PPL # of Par.
N-1= 1 2 4 1 2 4 4

KN+cache 168 134 129 — — — —
FFNN 176 131 119 132 116 107 6.32M
RNN 117 104 8.16M

LSTM (1L) 113 99 6.96M
LSRC(100) 109 96 5.81M
LSRC(200) 104 94 7.0M

Table : LMs performance on the PTB test set.

model PPL # of Par.
Context Size M=N-1 1 2 4 4

KN+cache 188 127 109 —
FFNN [M*200]-600-600-80k 235 150 114 64.84M

RNN [600]-R600-80k 85 96.36M
LSTM [200]-R600-80k 66 65.92M

LSTM [200]-R600-R600-80k 61 68.80M
LSRC [200]-R600-80k 63 65.96M

LSRC [200]-R600-600-80k 59 66.32M
Table : LMs performance on the LTCB test set.

LSRC outperforms state-of-the-art NNLMs by explicitly modeling
long vs short range context using two separate (local and global)
memory states.

Conclusion
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