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Abstract

In this study, a technique called semantic self-organization
is used to scale up the subsymbolic approach by allowing
a network to optimally allocate frame representations from
a semantic dependency graph. The resulting architecture,
INSOMNet, was trained on semantic representations of the
newly-released LinGO Redwoods HPSG Treebank of anno-
tated sentences from the VerbMobil project. The results show
that INSOMNet is able to accurately represent the semantic
dependencies while demonstrating expectations and defaults,
coactivation of multiple interpretations, and robust process-
ing of noisy input. The cognitive plausibility of the model is
underscored by the collective modelling of four experiments
from the visual worlds paradigm to show the model’s ability
to adapt to context.

Introduction
Deep semantic analysis of sentences from real-world dia-
logues is possible using neural networks: a subsymbolic sys-
tem can be trained to read a sentence with complex gram-
matical structure into a holistic representation of the seman-
tic features and dependencies of the sentence. This research
breaks new ground in two important respects. First, the
model described in this paper, the Incremental Nonmono-
tonic Self-Organization of Meaning Network (INSOM-
Net) (Mayberry 2003; Mayberry & Miikkulainen 2003), is
the first subsymbolic system to be applied to deep seman-
tic representations derived from the hand-annotated LinGO
Redwoods Head-driven Phrase Structure Grammar (HPSG)
Treebank (Oepenet al. 2002) of real-world sentences from
the recently completed VerbMobil project (Wahlster 2000).
Second, whereas most previous work has focused on the rep-
resentation and learning of syntactic tree structures (such as
those in the Penn Treebank), the semantic representations
taken up in this study are actually dependency graphs repre-
sented with flat semantics called Minimal Recursion Seman-
tics (MRS) (Copestake, Lascarides, & Flickinger 2001). The
challenge of developing a subsymbolic scheme for handling
graph structures led to self-organizing the case-role frame
representations that serve as the graph nodes. This semantic
self-organization in turn results in a number of interesting
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Figure 1:MRS Dependency Graph. This graph represents the
sentencethe boy hit the girl with the doll. Nodes in the graph are
labeled with a handle and the word in the sentence (or semantic
relation if there is no corresponding word). A dashed node con-
nected to another node represents attachment. In this case, both
nodes have the same handle, which is how MRS represents modifi-
cation. The arcs that come out of a node indicate subcategorization
and are labeled with the arguments that the word or semantic re-
lation takes. The handles that fill those roles are the labels of the
nodes the arcs point to.

cognitive behaviors that will be briefly described in this pa-
per, together with results from modelling more fine-grained
psycholinguistic behavior from visual worlds studies.

Case-role Assignment with SRNs
The INSOMNet system is motivated by earlier work in
the semantic task of case-role assignment using neural net-
works. Based on the theory of thematic case roles (Fillmore
1968), case-role analysis assumes that the syntactic structure
of the sentence is specified beforehand, and the goal is to as-
sign the proper roles to the words in the sentence. For exam-
ple, given a simple sentence with subject, verb, object, and
a with-clause, the network’s task is to assign those words
to the thematic rolesagent, act, patient, andmodifier or
instrument depending on the selectional preferences of the
words in the training corpus (Miikkulainen & Dyer 1991;
McClelland & Kawamoto 1986). The sentence is read in
one word at a time, and the network is trained to map the
sentence into those words that fill the case roles for that sen-
tence. In this manner the network develops expectations and
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Figure 2: Stages toward Representing Semantic Graphs in Neural Networks. The grid on the left represents the basic information
in the nodes and values in Figure 1, and the grid in the middle adds the labeled arcs for roles and their fillers. The grid on the right uses
subcategorization information to indicate roles and fillers instead of explicit arcs.

defaults in much the same way as people do.
While this approach works well for sentences with fixed

structure, it becomes untenable given the full complexity of
language. Stopgap solutions, such as fixing the number of
any given role, only work on toy grammars and small cor-
pora, and are both linguistically and cognitively undesirable.
The building of structures that represent meaning should not
impose hard constraints on the complexity of the structure.
To be cognitively valid, the ability to build up more com-
plex structures should rather be subject to soft constraints
that result in human-like errors in processing.

Sentence Representation
Our solution is motivated by the goal of representing the se-
mantics of a sentence in as explicit and flexible a manner
as possible. The semantic formalism used is MRS, which is
a flat representation scheme based on predicate logic where
nodes represent case-role frames and arcs represent depen-
dencies between them. While space does not permit re-
viewing MRS in detail, we illustrate how MRS is used in
INSOMNet by example. Figure 1 shows the MRS depen-
dency graph for the sentencethe boy hit the girl with the
doll. This representation consists of 14 frames connected
with arcs whose labels indicate the type of semantic depen-
dency.

The sentence is declarative, as indicated by the semantic
relationprpstn rel in the top node labeled by the handleh0.
Sentence types subcategorize for astate-of-affairs, which is
indicated in Figure 1 by the arc labeledSA. The filler for this
role is the handleh1, which is the label of the node for the
main predication of the sentence, the verbhit. Verbs have an
eventrole, and transitive verbs, such ashit, have anarg1role
and anarg3 role, which correspond to the thematic roles of
agentandpatient, respectively. These three roles are repre-
sented in the figure by the arcs labeledEV, A1, andA3. The
filler for the verb’sEV argument is the indexe0for anevent
structurewith semantic typeEVT that specifies features for
the verb such as tense, aspect, and mood. These features are
not shown in Figure 1 to save space. The semantics of the
noun phrases in the sentence are represented by three sets of

nodes. Each set represents the determiner, the noun, and an
index that indicates the features of the noun, such as gender,
number, and person. The determiner is a quantifier which
subcategorizes for thebound variable(BV) andrestriction
(RE) arguments (thescoperole is empty in the current re-
lease of the Redwoods Treebank). TheBV role is filled with
the noun’s index, and theRE role, with the noun’s handle.
The noun has a singleinstance(IX ) role, filled with its in-
dex. The noun phrase,the boy, will make the representation
clearer. In Figure 1, the node for the nounboy is labeled
with the handleh2, which fills theRE role for the governing
determinerthe. The index ofboy is the handlex0, which la-
bels the node with semantic typeFRI , indicating thatboy is
a full referential index. The index handlex0 binds the deter-
miner and noun through theirBV andIX roles, respectively,
and fills theA1 role ofhit to indicate thatboy is the agent of
the verb. Similarly, the index handlex1 fills the verb’sA3
role to denote the patient. The handlex2 is the index for the
noundoll and fills theA3 role of the prepositionwith. The
preposition can either modify the verb for the instrumental
sense of the sentence, or the noun for the modifier sense. In
MRS, modification is represented byconjunctionof pred-
icates; for examplebig red doll is denoted by

∧
[big(x),

red(x),doll(x)]. The n-ary connective
∧

is replaced by a
handle, which is distributed across the operands so that each
predicate has the same handle (an operation we callhandle-
sharing). In the case of verb-attachment, the verbhit and the
prepositionwith both share the handleh1, and the preposi-
tion’s A0 role is filled with the verb’s event structure handle
e0. For noun-attachment,with has the same handleh5 as
girl , and itsA0 role points to the indexx1 of girl . How the
sentence is to be disambiguated is handled in the network by
activating one sense more highly than the other.

Before we begin to describe the architecture, its activa-
tion and training, it would be useful to motivate its design
in terms of the semantic representation in Figure 1. Fig-
ure 2 shows how a graph- or frame-based representation like
that in Figure 1 could be represented in a grid, where the
cells in the grids hold the components of individual MRS
frames. This grid representation corresponds to the output of



__ __

context layer

x0 x1h1 hit

WD SE TY A1 A3 DMA0HA EV

e0

Frame Map

Frame Node

A0A1A3DMEV

Frame Selector Semantic Frame Encoder/Decoder

Sequence Processor

Modulator

Indicator

Frame

Map

Node

Node
Frame

_arg13_rel

the boy hit the girl with the doll

input layer

hidden layer

SARDNet

doll

Map

Figure 3:The INSOMNet Architecture. The INSOMNet model consists of three operational modules based on how they function together.
TheSequence Processor reads the input sentence in one word at a time and activates both theFrame Selector and theSemantic Frame
Encoder and Decoder. TheSemantic Frame Encoder and Decoder encodes the MRS dependency graph for the semantic interpretation
of the sentence as it is incrementally processed.Frame Selector is trained to select frames in a graded manner corresponding to ana
posterioriprobability that those frames belong to the current semantic interpretation.

the SRN. The leftmost grid only shows the graph nodes and
values without the labeled arcs. These arcs are added in the
middle grid to indicate how the cells are denoted according
to their fillers. The grid on the right uses subcategorization
information to indicate roles and fillers instead of explicit
arcs. Figure 2 reveals how the use of the subcategorization
information implicitly represents the labeled arcs. As can
be seen, this representation completely describes the graph
in Figure 1. Rather than with symbolic components, these
frames are encoded through distributed representations, and
a decodernetwork is required to pull out their individual
components. The grid itself corresponds to theFrame Map
in INSOMNet (see Figure 3), described in next.

Network Architecture
The INSOMNet sentence processing architecture (Figure 3)
consists of three operational components: theSequence
Processor, the Semantic Frame Encoder/Decoder, and the
Frame Selector.

The Sequence Processoris based on the SRN and pro-
cesses a sentence one word at a time. ASARDNet
Map (Mayberry & Miikkulainen 1999) retains an exponen-
tially decaying activation of the input sequence to help the
network remember long sequences.

The self-organizedFrame Map of the Semantic Frame
Encoder/Decoderis the main innovation of INSOMNet. In
the current model, eachFrame Node in the map itself con-
sists of 100 units. TheFrame Map itself is a12 × 12 as-
sembly of these nodes. As a result of processing the in-
put sequence, theFrame Selectorwill activate a number of
these nodes to different degrees; that is, a particular pattern
of activation appears over the units of these nodes. Through
the weights in theFrame Node Decoder, these patterns
are decoded into the corresponding MRS case-role frames.

The same weights are used for each node in the map. This
weight-sharing enforces generalization among common el-
ements across the many frames in any given MRS depen-
dency graph.

The Frame Map is self-organized based on the com-
pression of the frame representations. This process serves
to identify which nodes in theFrame Map correspond to
which case-role frames in the MRS structure. Because the
frame compressions are distributed representations of case-
role frames, similar frames will cluster together on the map.
Determiners will tend to occupy one section of the map, the
various types of verbs another, nouns yet another, and so
on. However, although each node becomes tuned to par-
ticular kinds of frames, no particularFrame Node is ded-
icated to any given frame. Rather, through different activa-
tion patterns over their units, the nodes are flexible enough to
represent different frames, depending on what is needed to
represent the input sequence. For example in Figure 3, the
Frame Node at the bottom decodes to theh1 hit arg rel
A0A1A3DMEV x0 x1 e0case-role frame for this partic-
ular sentence. In another sentence, it could represent a dif-
ferent verb with a slightly different subcategorization type.
This feature of the architecture makes theFrame Map able
to represent semantic dependency graphs dynamically, en-
hancing generalization.

During training of the SRN, theFrame Node serves as a
second hidden layer and the case-role frames as the output
layer. The appropriate frames are presented as targets for the
Frame Node layer, and the resulting error signals are back-
propagated through theFrame Node Decoder weights to
theFrame Node layer and on up to the first hidden layer.

TheFrame Map holds the encoded frame representations
so that they can be decoded by theFrame Node Decoder.
TheFrame Selector system, on the other hand, is used to
indicate what frames are active in the current interpretation
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Figure 4: Sentence Processing Performance. The nodes on
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tified, and their activations evaluated according to whether they
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and the false positives are non-target frames above threshold. The
result is a maximum F-measure of0.76 atx = 0.7.

of a sentence, and the degree to which they are active.
At the same time, a RAAM network is trained to form

the compressed frame representations, and the current rep-
resentations are used to organize theFrame Map. The input
word representations are randomly distributed 64-unit vec-
tors on which theSARDNet map is self-organized. Even-
tually the compressed frame representations converge, and
the networks learns to generate the correct MRS dependency
graph and the corresponding case-role frames as its output.

Experiments
Ten-fold cross-validation was run on the4817 sentences
from the Redwoods Treebank (Version June 20, 2001) for
which at least one analysis was selected as correct by the
treebank annotator. The dataset had1054 tokens and104
abstract semantic relations. Morphemes such as-s and -
ing were processed in separate steps, but common inflected
words such asamanddonewere left unchanged.

INSOMNet was trained with an initial learning rate of
0.01 and theFrame Node Indicator Map given an initial
learning rate of 0.4. The neighborhood was initialized to
half the Frame Map’s diameter. The learning rate of the
Frame Node Indicator Map was decayed by 0.9 and the
neighborhood decremented according to the schedule

epochi+1 = 1.5 ∗ epochi + 1

wherei indexes each parameter update. Once theFrame
Node Indicator Map had stopped self-organizing when its
learning rate fell below0.001, the learning rate for INSOM-
Net was decayed by 0.5 according to the same schedule.

Results
Figure 4 provides one measure of INSOMNet’s average per-
formance on the held-out data. Thex-axis denotes the frame
activation level, and they-axis, the precision/recall curves

(together with their F-measure). The F-measure is highest at
x = 0.7, where approximately72% of target dependencies
were selected by INSOMNet, and81% of selected depen-
dencies were targeted.

Psycholinguistic modelling
Psycholinguists have typically pursued subsymbolic pars-
ing architectures because they show promise not only in be-
ing scaled up to real-world natural language, but they do so
while retaining the cognitively plausible behavior that sets
these systems apart from most other NLP approaches. Here
we will present some preliminary results on the integration
of multimodal input to INSOMNet to demonstrate theadap-
tive behavior of the network in addition to the more char-
acteristic behaviors of incrementality and anticipation. The
cognitive phenomenon that we look at here is people’s abil-
ity to use context information, such as visual scenes, to more
rapidly interpret and disambiguate a sentence. In the four vi-
sual worlds experiments modelled in this section, accurate
sentence interpretation hinges on proper case-role assign-
ment to sentence participants. All four experiments were
conducted in German, a language that allows both subject-
verb-object (SVO) and object-verb-subject (OVS) sentence
types, so that word order cannot be reliably used to deter-
mine role assignments. Rather, case marking in German is
used to indicate grammatical function such as subject or ob-
ject, except in the case of feminine nouns where the article
does not carry any distinguishing marking for the nomina-
tive and accusative cases. These experiments made it pos-
sible to analyse the interplay between scene context and a
variety of linguistic factors, as described next.

Morphosyntactic and lexical verb information.
Kamide, Scheepers, & Altmann showed how selectional
restrictions on verbs involve a compositional linguistic
component to predict the semantic class of upcoming
arguments. German sentences were presented accoustically
with visual scenes showing, for example, a hare, cabbage,
a fox, and a distractor. The scene was either combined
with a subject-first sentenceDer Hase frisst gleich den
Kohl (“The harenom eats just now the cabbageacc”) or with
the object-first sentenceDen Hasen frisst gleich der Fuchs
(”The hareacc eats just now the foxnom”). The nominative
case marking onder Hasemade it a typical agent, which,
when combined with the semantic information associated
with the verbfrisst, allowed listeners to predict the cabbage
as the most plausible forthcoming referent in the scene.
On the other hand, accusative case marking onden Hasen
made it a typical patient, and listeners predicted the fox
as the most plausible forthcoming referent. Syntactic case
information was apparently combined with semantic verb
information to predict post-verbal referring expressions.

Verb type information. To ensure that syntactic case
information alone was not sufficient to predict subsequent
referents, Scheepers, Kamide, & Altmann used experi-
encer/theme verbs in which the agent (experiencer) and pa-
tient (theme) roles were interchanged. Thus, whereas for
verbs likefrisst (“eats”) the subject is typically the agent of
a sentence, for verbs likeinteressiert(“interests”), the sub-
ject is typically the Patient. Thus, withinteressiertinstead
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of frisst, the role of most suitable referent switches. Accord-
ingly, the pattern of anticipatory eye movements reversed for
the two types of verb, confirming that both syntactic case in-
formation and semantic verb information are being used to
predict subsequent referents.

Ambiguity in word order. Knoeferle et al. tested
whether depicted events in the absence of selectional re-
strictions would allow for early disambiguation of argument
roles in a visual-world study with sentences in which the ini-
tial NP was case-ambiguous andlinguistic disambiguation
took place at the second NP that was clearly case-marked
as either accusative (patient) or nominative (agent). An ex-
ample is the SVO sentenceDie Princessin malt gleich den
Fechter (“The princessnom paints just now the fenceracc”)
versus the OVS sentenceDie Princessin ẅascht gleich der
Pirat (“The princessacc washes just now the piratenom”).
Together with the auditorily presented sentence a visual
scene was shown in which a princess both paints a fencer
and is washed by a pirate (see Figure 5). Because stereotyp-
icality and selectional information were strictly controlled
for, they could not be used to disambiguate at the point
of the verb; however, the events in the scenes potentially
could. As expected, the SVO preference initially triggered
eye-movements to the patient for both sentence types. More
interesting still, when verb information, combined with de-

picted events, disambiguated towards an OVS structure, this
interpretation was quickly revised, causing anticipatory eye-
movements to the agent. The study showed that German lis-
teners initially prefer to interpret case ambiguous sentence-
initial NPs as agents, but also that lexical verb information
can be rapidly matched with depicted actions to quickly re-
vise this interpretation when appropriate.

Soft temporal adverb constraint. Knoeferleet al. also
investigated German verb-final active/passive constructions
to show that linguistic disambiguation relies on a thematic
role-assignment process that did not depend on grammatical
function. In both the active future-tense sentenceDie Prin-
cessin wird sogleich den Pirat washen(“The princessnom

will soon wash the pirateacc”) and the passive sentence
Die Princessin wird soeben von dem Fechter gemalt(“The
princessacc is currently painted by the fencernom”), the ini-
tial subject noun phrase is disambiguated as agent in the ac-
tive sentence and as patient in the passive sentence. To evoke
early linguistic disambiguation, temporal adverbs were used
to bias the auxiliarywird toward either the future (“will”)
or passive (“is ...ed”). Because the constructions used were
verb-final, the interplay of scene and linguistic cues such as
those provided by the temporal adverbs were rather more
subtle. Thus, when the listener heard a future-biased adverb
such assogleich, after the auxiliarywird, she would interpret
the initial NP as an agent of a future construction, and use
the scene in which that NP filled the agent role to anticipate
the upcoming patient argument. Conversely, listeners inter-
preted the passive construction with these roles exchanged.

Experimental Modelling with INSOMNet
INSOMNet was modified to represent just the sentence
types in the four experiments in order to model the finer be-
havior of early disambiguation observed in all cases. The
Semantic Frame Decoder was simplified to produce a lex-
ical item and either an agent or a patient role. The greater
modification to the network involved adding extra input as-
semblies for the characters and events from the scenes to the
model which fed into thehidden layer (see Figure 5).

The modelling task also differed from the corpus-based
approach described earlier in how subsymbolic systems
might be scaled up to broad coverage models. In these ex-
periments, we have adopted a grammar-based approach to
exhaustively generate a set of sentences based on the experi-
mental materials while holding out the actual materials used
for testing. Furthermore, half the sentences were trained
with scenes and half were trained without in order to ap-
proximate linguistic experience.

INSOMNet is clearly able to perform the early disam-
biguation task, meaning that it is able to access the scene
information and combine it with the incrementally presented
sentence to anticipate forthcoming arguments. For the two
experiments using non-stereotypical characters and depicted
events, accuracy was nearly 100%, and for the other two
experiments using selectional restrictions, the performance
was somewhat less at 94%. Part of the reason for this dis-
crepancy is that there is no event information provided in
these latter experiments, so INSOMNet has more informa-
tion to work with in the first two experiments.



Discussion
There is clearly room for improvement in the scaling up per-
formance of INSOMNet. Although 50% of the errors can
be attributed to annotation errors in the original corpus, the
remainder offers opportunities to improve the model’s archi-
tectural foundation. Apart from this performance issue, IN-
SOMNet does exhibit a number of interesting behaviors that
make it a useful cognitive model. First, sentence process-
ing in INSOMNet is incremental and nonmonotonic, with
radical interpretation revision possible. Second, INSOMNet
represents ambiguities explicitly and in parallel, thereby al-
lowing multiple interpretations to be simultaneously active
to the degree warranted by training. Third, experiments have
shown that the model is robust to dysfluencies such as hes-
itations, repairs, and restarts. Fourth, INSOMNet demon-
strates the hallmark behavior of expectations and defaults
that arise automatically in subsymbolic systems. And fifth,
INSOMNet is able to seamlessly integrate multimodal in-
put in an adaptive manner that begins to get at the core
of true human language performance, which is not passive
and single-channel, but dynamic, adaptive, and character-
ized by active, anticipatory interpretation. Indeed, the abil-
ity to adaptively integrate multimodal input touches directly
on the issue of compositionality, which is generally regarded
from the viewpoint of a single input mode. The results sug-
gest that subsymbolic systems feature a natural mechanism
for handling this extended view of compositionality.

Despite these desirable behavioral characteristics of IN-
SOMNet, there remains the open issue of how best to in-
terpret the network’s output. Because each frame is acti-
vated by theFrame Selector to denote its inclusion in the
sentence interpretation, it often happens that extra frames
that are not part of the golden standard are activated in addi-
tion (for purposes of rigor, these frames were discounted as
“false positives” in our results, bringing down the precision
results). Moreover, an effect similar to “dangling pointers”
is possible upon decoding frames if components are not ac-
tivated strongly enough on theFrame Map. The principal
concern is that the natural gradience of subsymbolic sys-
tems such as INSOMNet makes it difficult to give its out-
put the type of categorical interpretation typical in statisti-
cal/symbolic computational linguistic research.

Conclusion
In this paper, we presented a subsymbolic sentence proces-
sor, INSOMNet, that is able to analyze a real-world corpus
of sentences into semantic representations. A crucial inno-
vation was to use an MRS dependency graph as the sentence
representation, encoded in a self-organizedFrame Map. As
is typical of holistic systems, the interpretation is developed
nonmonotonically in the course of incrementally reading in
the input words, thereby demonstrating several cognitive be-
haviors such as coactivation, expectations and defaults, and
robustness. Equally crucial is how readily the network is
able to adapt to context to anticipate upcoming argument
roles. These properties make INSOMNet a promising foun-
dation for understanding situated human sentence process-
ing in the future.
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